

Alaska Department of Environmental Conservation

## Alaska DEC Oil Pipeline Conference September 18, 2013 Anchorage, Alaska

## River Crossings What Have We Learned In 40 Years



Wim M. Veldman, M.Sc., FEIC, P.Eng.

## **OVERVIEW**

### DESIGN

- CONSTRUCTION
- OPERATIONS

# THEMES

### SO WHAT?

Interesting? Does it matter?

### WHAT IF?

- We will never know everything
- Thus how do we ensure acceptable risks

## DESIGN – STEPS

#### **FLOW**

• Water Level  $\rightarrow$  Scour = Pipe Depth

### **SCOUR**

 Bank Erosion → Floodplain Changes = Crossing Extent

## FLOW – THEN

## Limited/no data north of Brooks Range

- Used very conservative rainfall/runoff model
- BUT, 1992 flood >> design flow

## FLOW – NOW

## 35 – 40 years of data north of Brooks Range

Adequate for flood frequency analysis

### Unique conditions

- Influence of lakes/wetlands. "Release" of outlets in spring
- Ice jam releases up to 5X peak flow possible
- Glacier dammed lake releases

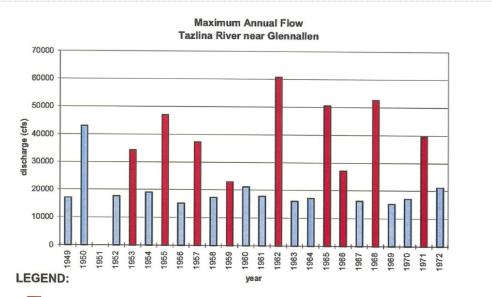
# FLOW GLACIER DAMMED LAKE RELEASES

History of releases? Flow data?

## Triggered by:

- Snow melt (typical)
- And/or heavy rain (Tazlina R, 1997)
- Neither some mid-winter releases

(Tazlina R, 2005)




Tazlina River

# **GLACIER DAMMED LAKE RELEASES**

### What if/Impact?

- Buried crossing
- Elevated crossing
- River training structures
- 1997 Tazlina River
  Flood greater than
  design



Instantaneous discharge during release of glacier-dammed lakes (As per Appendix E, "Summary Report, River and Floodplain Design Criteria", Alyeska Pipeline Service Company, March 1, 1974 Revision)

Maximum mean daily discharge from USGS data for station 15202000. Gage terminated in 1972.

# WATER LEVELS

### Summer floods

Same as non-arctic rivers

### Spring floods

Flow over ground - fast icingsIce jams/jam releases

# **AUFEIS (ICINGS) LEVELS**

#### General theory =

- Cold + Low Snow = maximum icings
- But site specifically, the opposite can occur
  - 1975 Dietrich River, cold, low snow = maximum icing at MP197 = long dike required to protect TAPS
  - 1976 Dietrich River, warm, high snow = maximum icing one mile downstream = flooding of the Dietrich camp.



## WATER LEVELS – WHAT IFS

- Impact of aufeis (icing) levels on:
  - Buried crossings minimal
  - Elevated line/crossings could be significant
  - River training structures could be significant
- Terraces can limit maximum icing levels
- Flow downcuts through icings or deteriorates the ice in 3-5 days.

# SCOUR – TYPES

### General

straight channel scour during floods

usually not significant if stream is in "regime"

### Local scour

- At bends, confluences, debris jams and structures
- 1.5 to 3.5 x general scour depth

# SCOUR COMPUTATION

### General Scour

- Regime
- Competent Velocity
- Mathematical Models

### Local Scour

- Present and future channel conditions
- Qualitative/empirical data

### SO WHAT ?

- General scour not significant generally
- Local scour much more significant
- Is pipeline exposure = failure?

# **SCOUR – UNIQUE CONDITIONS**

#### Spring

- Over ice/frozen ground
- Minimal scour

#### Ice jams

- Severe scour at jam
- Scour during jam release

#### Alluvial fans/debris flows

- Deposition
- Channel changes

#### Mackenzie River Delta

Hydraulic/thermal conditions

# BANK EROSION/CHANNEL CHANGES

#### Summer Floods

- Same as non-arctic rivers
- Survey historic erosion during major floods. Use this as a "trigger" to determine when bank protection is required for operating lines.
- Bank erosion, especially in treed areas which generate debris, is a prime threat to buried pipelines

#### Spring Floods

- Frozen/snow covered banks = little bank erosion
- Overflows in floodplains = little scour or channel changes in the floodplain. Structures can be affected.

# BANK EROSION/CHANNEL CHANGES

### Caused primarily by:

- High floods = sediment movement = debris = channel changes = bank erosion
- All things being equal, less changes on Arctic rivers especially those north of the Brooks Range

### DESIGN – RELATIVE IMPORTANCE BURIED CROSSINGS

|              | Low | Medium | High |
|--------------|-----|--------|------|
| Streamflow   |     |        |      |
| Peak         | х — | X      |      |
| Low          | х   |        |      |
| Water Level  |     |        |      |
| Open Water   | х   | ×      |      |
| lce          | x   |        |      |
| Bed Scour    |     |        |      |
| General      |     | х      | х    |
| Local        |     |        | ×    |
| Bank Erosion |     |        | х    |

Quantitative vs. Qualitative Analysis

### DESIGN – RELATIVE IMPORTANCE ELEVATED CROSSINGS

|              | Low | Medium | High |
|--------------|-----|--------|------|
| Streamflow   |     |        |      |
| Peak         |     |        | х    |
| Low          | x   | -      | -    |
| Water Level  |     |        |      |
| Open Water   |     |        | Х    |
| lce          |     |        | Х    |
| Bed Scour    |     |        |      |
| General      |     | x      |      |
| Local        |     |        | х    |
| Bank Erosion |     | x      | → X  |

# CONSTRUCTION

### Various techniques for:

- Environmental reasons
- Construction reasons

### Arctic construction – hot oil pipelines

- A "dry" frozen ditch is not necessarily optimum
- Impact of icings on feasible flow isolation methods

## **CONSTRUCTON TECHNIQUES**



Frozen "dry" ditch



Flow Isolation- Pipe Flume



Open cut, wet ditch.



Flow Isolation-Pumping

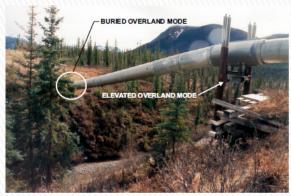
## **OTHER CONSTRUCTION TECHNIQUES**



Open Cut – Sauerman Dragline








HDD



Flow Isolation - Superflumes

## **ELEVATED CROSSINGS**



Free span of pipe



**Pile Supports** 

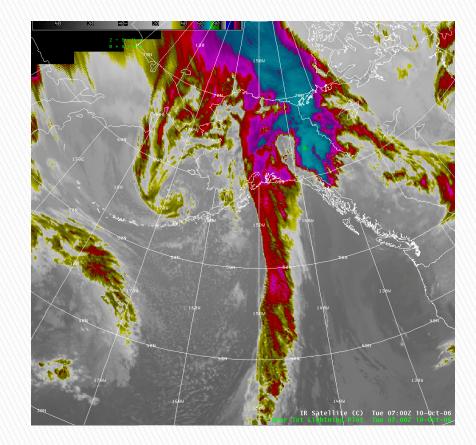


Girder Bridge



Suspension Bridge

# **OPERATIONAL MONITORING**


#### Extreme event - 2006

#### Impact on:

- Access roads and highways
- Buried pipeline
- Elevated pipeline

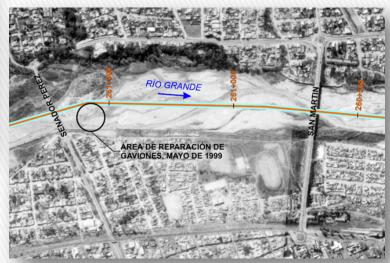
### Consequences of impact

- Access
- Integrity
- Rebuild or upgrade





Adapt to Conditions








#### Schedule for Conditions





**Challenge** Conventional Design Wisdom



**Challenge** Conventional Regulatory Wisdom "Do You Know What Tsina River Means"



**Understand** Scope of Commitment



**Utilize** Operational Performance Data





#### Value of Hands-On Knowledge





#### Utilize Local Knowledge

# THANK YOU